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Abstract. In this paper, we seek the periodic solutions of the Hénon–Heiles nonintegrable
Hamiltonian system. We apply the Lindstedt–Poincaré method, in order, first to enumerate
the main periodic families in the neighbourhood of the origin, then to determine the series
corresponding to these families and to their periods. All the series will be computed to O(A21)

by means of the computer algebra system ‘Mathematica’, whereA is the zeroth-order amplitude.
We also prove that the period of the rectilinear periodic family is exactly equal to a Gauss
hypergeometric series. Moreover, we show that the celestial technique of the ‘elimination of
secular terms’ is rigorously equivalent to the ‘Fredholm alternative’. We further test the validity
of the periodic families using numerical integration. Finally, we compare our results with those
of the Churchill–Pecelli–Rod ‘geometrical’ method.

1. Introduction

In this work, we will apply the Lindstedt–Poincaré (LP) method to look for the periodic
solutions, in the neighbourhood of the equilibrium point (here the origin), of the Hénon–
Heiles nonintegrable Hamiltonian system whose Hamiltonian is given by

H = 1
2(ẋ

2+ ẏ2+ x2+ y2)+ ε(xy2− 1
3x

3) (1.1)

whereε is a real parameter and(x, y) are the generalized coordinates withẋ = dx
dt , ẏ = dy

dt .

Using the technique of the stretching variablesx̃ = εx, ỹ = εy, H̃ = ε2H , we can set
ε = 1. The motion of this system is governed by the following differential equations:

ẍ + x = ε(x2− y2)

ÿ + y = −2εxy.
(1.2)

In view of the theorem of Weinstein–Moser [1], we can assure the existence for this system,
for sufficiently small energies, at least two periodic orbits.

Recently, this system aroused the increasing interest of many astronomers, physicists
and mathematicians [2–4]. Initially, it was introduced and studied numerically by the two
astronomers H́enon and Heiles [5]. Later, it was the subject of numerous numerical and
geometrical researches. One of the major problems met with the application of numerical
methods to Hamiltonian systems is the accumulation of round-off errors. These last methods
also present the inconvenience that they do not offer any information about the number of
the periodic families nor about their periods.
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In our work, we shall be interested in the Hénon–Heiles system from a perturbative
point of view, using the LP method. We will see that the importance of this method lies in
the fact that it permits on the one hand the enumeration of the main periodic families and
on the other hand the determination of these families, as well as their periods in the form
of perturbative series.

This method is well known in the literature of one-degree-of-freedom systems [6, 7].
It remains very little used in the case of two-degrees-of-freedom systems, in spite of the
existence of powerful computer algebra systems. The power of these systems is due to the
fact that they handle not only symbolic computations but also numerical computations with
any precision.

In section 2, we will describe the LP method in the case of the Hénon–Heiles system,
thus deducing a recurrent functional algorithm. We will also prove that the celestial
technique of ‘elimination of secular terms’, on which the LP method is based, is rigorously
equivalent to the ‘alternative of Fredholm’.

In section 3, we will apply the LP method in order to look for the periodic families
of the H́enon–Heiles system in the neighbourhood of the origin. We will then show,
exploiting the first steps of the LP algorithm, that the system has eight main periodic
families. Actually, taking into account the symmetry and the invariance by rotations of
angles± 2π

3 of the potential, we can distinguish only three main periodic families: the
‘rectilinear-R’, the ‘curvilinear-V ’ and the ‘circular-C’. By means of the computer algebra
system ‘Mathematica’, we will compute the series corresponding to these periodic families
and to their periods to O(A21), whereA is the zeroth-order amplitude. We will moreover
test the validity of these series by numerical integration.

In section 4, we will study the periods of the three main periodic families in terms of
the energyE. We will first give the coefficients of the power series, truncated to O(E10),
representing the periods of these families. We will then prove, reducing the system to one
degree of freedom and applying a method based on the distributions due to the authors of
[8, 9], that the period of the rectilinear family is equal to a Gauss hypergeometric series.
This will constitute a good check of the rectilinear periodic family computed by the LP
method. We will finally discuss the convergence of the series representing the periods of
the three main periodic families.

In section 5, we will compare our results with those of the ‘geometrical’ method of
Churchillet al [10]. We will particularly notice the perfect agreement concerning the number
and the form of the main periodic families. However, we will point out a disagreement
about the circular periodic family.

2. Method of Lindstedt–Poincaŕe

2.1. Description of the Lindstedt–Poincar´e method

The main purpose of this method is to look for periodic solutions of the system (1.2) in the
form

x(t) =
∞∑
j=0

xj (t) · εj

y(t) =
∞∑
j=0

yj (t) · εj
(2.1)
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where the functionsxj and yj are T -periodic. Moreover, the method requires that the
pulsationω = 2π

T
is in the form

ω = ω0+ ω1 · ε + ω2 · ε2+ · · · (2.2)

whereω0 = 1 andωj ∈ R.
Let us make the change of variables

θ = ωt
X(θ) = x(t) Xj (θ) = xj (t)
Y (θ) = y(t) Yj (θ) = yj (t).

(2.3)

The system (1.2) then becomes

ω2X′′ +X = ε(X2− Y 2)

ω2Y ′′ + Y = −2εXY.
(2.4)

The problem is now reduced to looking for the 2π -periodic solutions(X, Y ) in the form

X(θ) =
∞∑
j=0

Xj(θ) · εj

Y (θ) =
∞∑
j=0

Yj (θ) · εj
(2.5)

where the functionsXj andYj are 2π -periodic.
Setting

F(θ) = ε(X2(θ)− Y 2(θ))

G(θ) = −2εX(θ)Y (θ)
(2.6)

we obtain

F(θ) =
∞∑
j=0

Fj (θ) · εj

G(θ) =
∞∑
j=0

Gj(θ) · εj
(2.7)

with

F0 = G0 = 0

Fj =
j−1∑
k=0

(Xk ·Xj−k−1− Yk · Yj−k−1) j > 1

Gj = −2
j−1∑
k=0

Xk · Yj−k−1 j > 1.

(2.8)

The seriesω2 can be written in the form

ω2 =
∞∑
j=0

Qj · εj

Qj =
j∑
k=0

ωk · ωj−k.
(2.9)
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Equating the coefficients ofεj on both sides of the system (2.4) we obtain the algorithm

j∑
k=0

Qj−k

(
X′′k
Y ′′k

)
+
(
Xj
Yj

)
=
(
Fj
Gj

)
j ∈ N (2.10)

which can be written in the form(
X′′j +Xj
Y ′′j + Yj

)
=
(
Fj
Gj

)
−

j−1∑
k=1

Qj−k

(
X′′k
Y ′′k

)
−Qj

(
X′′0
Y ′′0

)
j ∈ N. (2.11)

This sequence of second-order linear differential systems of unknowns(Xj , Yj ),
constitutes a recurrent functional algorithm permitting in each stepj ∈ N to simultaneously
determine the constantQj and the solution(Xj , Yj ).

Determination ofQj and(Xj , Yj ). We are now going to show how to determine recurrently
Qj and(Xj , Yj ).

Stepj = 0. The system of this step is

X′′0 +X0 = 0

Y ′′0 + Y0 = 0
(2.12)

whose solution is given by

X0 = A cosθ + B sinθ

Y0 = C cosθ +D sinθ
(2.13)

whereA,B,C andD are arbitrary constants of integration.
We also have here

Q0 = 1. (2.14)

Stepj = 1. We have here the system(
X′′1 +X1

Y ′′1 + Y1

)
=
(
F1

G1

)
−Q1

(
X′′0
Y ′′0

)
(2.15)

where (
F1

G1

)
=
(
X2

0 − Y 2
0

−2X0Y0

)
. (2.16)

After some calculations we obtain(
F1

G1

)
(θ) =

(
a10

c10

)
+

2∑
k=1

(
a1k b1k

c1k d1k

)(
coskθ
sinkθ

)
(2.17)

with

a10 = A2+ B2− C2−D2

2
c10 = −AC − BD

a11 = 0 c11 = 0

a12 = A2+D2− B2− C2

2
c12 = BD − AC

b11 = 0 d11 = 0

b12 = AB − CD d12 = −AD − BC.

(2.18)
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The system (2.15) then becomes(
X′′1 +X1

Y ′′1 + Y1

)
=
(
a10

c10

)
+
(
a11+ A ·Q1 b11+ B ·Q1

c11+ C ·Q1 d11+D ·Q1

)(
cosθ
sinθ

)
+
(
a12 b12

c12 d12

)(
cos 2θ
sin 2θ

)
. (2.19)

Determination ofQ1. In order to avoid the secular terms(θ cosθ and θ sinθ) in X1 and
Y1, the coefficients of cosθ and sinθ have to vanish in the system (2.19).

So we obtain four algebraic equations

a11+ A ·Q1 = 0 c11+ C ·Q1 = 0

b11+ B ·Q1 = 0 d11+D ·Q1 = 0.
(2.20)

The constantQ1 exists then if and only if the six determinants

D1(A,B) = Ba11− Ab11 D1(B,C) = Cb11− Bc11

D1(A,C) = Ca11− Ac11 D1(B,D) = Db11− Bd11

D1(A,D) = Da11− Ad11 D1(C,D)−Dc11− Cd11

(2.21)

are null. In our case they vanish since we have

a11 = b11 = c11 = d11 = 0.

We can then deduce the constantQ1 from one of the equations (2.20)

Q1 = −a11

A
= 0 (if A 6= 0). (2.22)

Determination ofX1 andY1. After eliminating the terms cosθ and sinθ , the resolution of
the system (2.19) gives(
X1

Y1

)
=
(
A1B1

C1D1

)(
cosθ
sinθ

)
+
(
a10

c10

)
+

2∑
k=2

(
1

1− k2

)(
a1k b1k

c1k d1k

)(
coskθ
sinkθ

)
(2.23)

whereA1, B1, C1 andD1 are arbitrary constants of integration. Since we have not yet
obtained a relation betweenA,B,C andD, we can setA1 = B1 = C1 = D1 = 0.

Stepj . The system of this step is(
X′′j +Xj
Y ′′j + Yj

)
=
(
Fj
Gj

)
−

j−1∑
k=1

Qj−k

(
X′′k
Y ′′k

)
−Qj

(
X′′0
Y ′′0

)
. (2.24)

Now suppose, by hypothesis of induction, we have determinedQi and (Xi, Yi) for all
06 i 6 j − 1 with(
Xi
Yi

)
=
(
Ai Bi
Ci Di

)(
cosθ
sinθ

)
+
(
ai0
ci0

)
+

i+1∑
k=2

(
1

1− k2

)(
aik bik
cik dik

)(
coskθ
sinkθ

)
(2.25)

whereAi, Bi, Ci,Di , are arbitrary constants of integration.
We can then prove easily that at this stepj we have(

Fj
Gj

)
−

j−1∑
k=1

Qj−k

(
X′′k
Y ′′k

)
=
(
aj0

cj0

)
+

j+1∑
k=2

(
ajk bjk
cjk djk

)(
coskθ
sinkθ

)
(2.26)

whereajk, bjk, cjk anddjk depend on the constantsA,B,C andD.
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The system (2.24) then becomes(
X′′j +Xj
Y ′′j + Yj

)
=
(
aj0

cj0

)
+
(
aj1+ A ·Qj bj1+ B ·Qj
cj1+ C ·Qj dj1+D ·Qj

)(
cosθ
sinθ

)
+

j+1∑
k=2

(
ajkbjk
cjk djk

)(
coskθ
sinkθ

)
. (2.27)

Determination ofQj . Using the same technique of ‘elimination of secular terms’ applied
in the stepj = 1, we obtain four algebraic equations

aj1+ A ·Qj = 0 cj1+ C ·Qj = 0

bj1+ B ·Qj = 0 dj1+D ·Qj = 0.
(2.28)

The constantQj exists then if and only if the six determinants

Dj(A,B) = Baj1− Abj1 Dj(B,C) = Cbj1− Bcj1

Dj(A,C) = Caj1− Acj1 Dj(B,D) = Dbj1− Bdj1

Dj(A,D) = Daj1− Adj1 Dj(C,D) = Dcj1− Cdj1

(2.29)

are null.
Setting these determinants equal to zero permits us to eventually find a relation between

the constants of integration introduced in the preceding steps. To determineQj it is sufficient
to use one of the equations (2.28)

Qj = −aj1

A
(if A 6= 0). (2.30)

Determination ofXj andYj . After eliminating the terms cos(θ) and sin(θ), the resolution
of the system (2.24) gives(
Xj
Yj

)
=
(
Aj Bj
Cj Dj

)(
cosθ
sinθ

)
+
(
aj0

cj0

)
+

j+1∑
k=2

(
1

1− k2

)(
ajk bjk
cjk djk

)(
coskθ
sinkθ

)
(2.31)

whereAj , Bj , Cj andDj are arbitrary constants of integration.

2.2. Fredholm alternative and secular terms

We will now show that the well known celestial technique of ‘elimination of secular terms’,
on which the LP method is based, is rigorously equivalent to the Fredholm alternative.

Let us now rewrite the linear differential system (2.24) in the form(
X′′j
Y ′′j

)
+
(
Xj
Yj

)
=
(
fj
gj

)
(2.32)

where(
fj
gj

)
=
(
aj0

cj0

)
+
(
aj1+ AQj
cj1+ CQj

)
cosθ +

(
bj1+ BQj
dj1+DQj

)
sinθ

+
j+1∑
k=2

(
ajk bjk
cjk djk

)(
coskθ
sinkθ

)
. (2.33)
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Theorem. (Fredholm alternative, cf Reinhard [11, p 394]).Let us consider the differential
equation inRd

(I)
dx

dt
= A(t)x + b(t)

where the functionsb andA, defined inR and with values respectively inRd andL(Rd),
are continuous andT -periodic. We assume that the following adjoint equation of the
homogeneous equation

(II)
dy

dt
= − tA(t) · y

admitsp independentT -periodic solutionsy1, y2, . . . , yp. Then there existsp independent
T -periodic solutions for the equation (I) if and only if for allk ∈ N such thatk 6 p we
have

(III)
∫ T

0
〈yk(t), b(t)〉 dt = 0

where〈·, ·〉 denotes the scalar product inRd .
Let us apply this theorem to the system (2.32). If we set

u1 = Xj
u2 = X′j
u3 = Yj
u4 = Y ′j

(2.34)

then the system (2.32) can be written in the normal form
u′1
u′2
u′3
u′4

 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0



u1

u2

u3

u4

+


0
fj
0
gj

 (2.35)

or equivalently in the condensed form

u′ = Au+ b. (2.36)

It is clear thatA andb are 2π -periodic. The adjoint equation of (2.36) is then given by

v′ = Av. (2.37)

We can easily prove that this equation admits the four following independent 2π -periodic
solutions

v1 =


cosθ
− sinθ

0
0

 v2 =


sinθ
cosθ

0
0

 v3 =


0
0

cosθ
− sinθ

 v4 =


0
0

sinθ
cosθ

 (2.38)

which are the rows of the resolvant eAθ .
In view of the preceding theorem, the system (2.36) admits 2π -periodic solutions if and

only if for all k ∈ N such that 16 k 6 4 we have∫ 2π

0
〈vk(θ), b(θ)〉 dθ = 0 (2.39)
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i.e. ∫ 2π

0

(
fj (θ)

gj (θ)

)
cosθ dθ =

(
0
0

)
∫ 2π

0

(
fj (θ)

gj (θ)

)
sinθ dθ =

(
0
0

) . (2.40)

The first equality is equivalent to(
aj0

cj0

)∫ 2π

0
cosθ dθ +

(
aj1+ AQj
cj1+ CQj

)∫ 2π

0
cos2 θ dθ +

(
bj1+ BQj
dj1+DQj

)∫ 2π

0
sinθ · cosθ dθ

+
j+1∑
k=2

(
ajk bjk
cjk djk

)(∫ 2π
0 coskθ cosθ dθ∫ 2π
0 sinkθ cosθ dθ

)
=
(

0
0

)
. (2.41)

It is evident that all the integrals in the relation (2.41) are null except
∫ 2π

0 cos2 θ dθ = π .
The relation (2.41) is therefore equivalent to two algebraic equations

aj1+ AQj = 0

cj1+ CQj = 0.
(2.42)

Proceeding in the same manner for the second equality of (2.40), we obtain two other
algebraic equations

bj1+ BQj = 0

dj1+DQj = 0.
(2.43)

We thus recover the four algebraic equations (2.28) obtained using the technique of
‘elimination of secular terms’.

3. Enumeration and computation of the periodic families of the H́enon–Heiles system

3.1. Enumeration of the main periodic families of the H´enon–Heiles system

We will see here that the enumeration of the main periodic families is accomplished at the
fourth step of the algorithm (2.11).

Stepj = 0. The solution of this step is

X0 = A cosθ + B sinθ

Y0 = C cosθ +D sinθ

Q0 = 1.

(3.1)

Stepj = 1. The solution here is

X1 = a10− 1
3(a12 cos 2θ + b12 sin 2θ

Y1 = c10− 1
3(c12 cos 2θ + d12 sin 2θ)

Q1 = 0

(3.2)

where the coefficientsa1j , b1j , c1j andd1j are given in (2.18).
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Stepj = 2. To compute the six determinantsD2 of this step we must calculate the
coefficientsa21, b21, c21 andd21

a21 = 5
6(A

3+ AB2+ AC2)+ 7
3BCD − 3

2AD
2

b21 = 5
6(B

3+ BA2+ BD2)+ 7
3ACD − 3

2BC
2

c21 = 5
6(C

3+ CD2+ CA2)+ 7
3ABD − 3

2CB
2

d21 = 5
6(D

3+DC2+DB2)+ 7
3ABC − 3

2DA
2.

(3.3)

We then deduce the six determinants

D2(A,B) = 7
3(AC + BD)(BC − AD) D2(B,C) = 7

3(B
2− C2)BC − AD)

D2(A,C) = 7
3(AB + CD)(BC − AD) D2(B,D) = 7

3(AB + CD)(AD − BC)
D2(A,D) = 7

3(A
2−D2)(AD − BC) D2(C,D) = 7

3(AC + BD)(AD − BC)
(3.4)

which have to vanish. We can distinguish two cases.

First case (A,B) = (0, 0) or (C,D) = (0, 0)

Second case (A,B) 6= (0, 0) and (C,D) 6= (0, 0).

The zeroth-order solution given in (3.1) may be written as

X0 = α1 cos(θ + θ1)

Y0 = α2 cos(θ + θ2).
(3.5)

First case. (A,B) = (0, 0) or (C,D) = (0, 0)
(i) (A,B) = (0, 0). Thus

X0 = 0

Y0 = α2 cos(θ + θ2).

As the system is autonomous, we can make the change of variableθ → θ − θ2. We
then obtain

X0 = 0

Y0 = C cosθ.
(3.6)

In this case all six determinants (3.4) are null without any condition.
(ii) (C,D) = (0, 0. Thus

X0 = α1 cos(θ + θ1)

Y0 = 0

which may be written, after the change of variableθ → θ − θ1, in the form

X0 = A cosθ

Y0 = 0.
(3.7)

In this case we also remark that the six determinants (3.4) are all null without any
condition.
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Second case. (A,B) 6= (0, 0) and(C,D) 6= (0, 0). In this case we have

α1 =
√
A2+ B2 α2 =

√
C2+D2

sinθ1 = − B
α1

sinθ2 = −D
α2

cosθ1 = A

α1
cosθ2 = C

α2
.

(3.8)

If we equate the determinantD2(A,B) given in (3.4) to zero, we obtain

BC − AD = 0 or AC + BD = 0 (3.9)

which is equivalent to

sin(θ2− θ1) = 0 or cos(θ2− θ1) = 0

⇔ θ2− θ1 = kπ or θ2− θ1 = π

2
+ kπ. (3.10)

Hence(θ2− θ1) ∈ {0, π2 , π, 3π
2 }.

As the system is autonomous, we can make the change of variableθ → θ − θ1. We
thus have

X0 = α1 cosθ

Y0 = α2 cos(θ + θ2− θ1).
(3.11)

Since we have(θ2− θ1) ∈ {0, π2 , π, 3π
2 }, we can distinguish two cases

X0 = A cosθ and X0 = A cosθ

Y0 = C cosθ and Y0 = D sinθ.
(3.12)

It is clear that the previous cases (3.6) and (3.7) are included in (3.12) by settingA = 0
or C = 0.

Conclusion. The autonomy of the system and the resolution of the equationD2(A,B) = 0
imply that (3.12) are the only possible forms of(X0, Y0).

We have now to equate to zero, for each case of (3.12), the five others determinants of
(3.4).

First case

{
X0 = A cosθ

Y0 = C cosθ
(here we haveB = D = 0).

In this case all the determinants of (3.4) are null without any condition onA andC. We
then go to the stepj = 3.

Stepj = 3. After some calculations we obtain

a31 = b31 = c31 = d31 = 0. (3.13)

It follows that the six determinants of this step are null without any condition onA andC.
We then go to the stepj = 4.
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Stepj = 4. We obtain after some calculations

a41 = 2A(a30− 1
6a32)− 2C(c30− 1

6c32)+ 1
24(a12a23− c12c23)

c41 = −2A(c30− 1
6c32)− 2C(a30− 1

6a32)− 1
24(a12c23+ a23c12)

b41 = d41 = 0

(3.14)

with

a30 = 19
72(A

4+ C4− 6A2C2) c30 = 19
18AC(A

2− C2)

a32 = 1
144(59A4− 107C4+ 144A2C2) c32 = − 1

72AC(131A2+ 35C2)

a34 = 1
144(5A

4− C4− 12A2C2) c32 = 1
72AC(A

2− 7C2)

(3.15)

anda12, c12 are given in (2.18).
We can remark here that all the determinantsD4 are null exceptD4(A,C). The

calculation of this determinant leads to

D4(A,C) = 7
6AC(3A

4− 10A2C2+ 3C4) (3.16)

which vanish if

A = 0 or C = 0 or 3A4− 10A2C2+ 3C4 = 0 (3.17)

or equivalently if

A = 0 or C = 0 or C = ±
√

3A or C = ± A√
3
. (3.18)

We conclude that the only possible forms of this first case are

X0 = 0 X0 = A cosθ X0 = A cosθ X0 = A cosθ

Y0 = C cosθ Y0 = 0 Y0 = ±
√

3A cosθ Y0 = ± A√
3

cosθ
(3.19)

second case

{
X0 = A cosθ

Y0 = D sinθ
(we have hereB = C = 0).

We remark here that the six determinantsD2 of the step 2 are null except the determinant

D2(A,D) = 7
3AD(A

2−D2) (3.20)

which is null if

A = 0 or D = 0 or D = ±A. (3.21)

We deduce that the only possible forms of this second case are

X0 = 0 X0 = A cosθ X0 = A cosθ

Y0 = D sinθ Y0 = 0 Y0 = ±A sinθ.
(3.22)

General conclusion. The algorithm can be started with one of the following eight possible
cases

X0 = 0 X0 = A cosθ X0 = A cosθ X0 = A cosθ X0 = A cosθ

Y0 = C cosθ Y0 = 0 Y0 = ±
√

3A cosθ Y0 = ± A√
3

cosθ

Y0 = ±A sinθ.

(3.23)

Actually, each case corresponds to a periodic family parametrized by the zeroth-order
amplitudeA. We conclude then that the LP method permits the determination of eight main
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Figure 1. (a) Three rectilinear periodic orbits computed by the LP method. (b) Three rectilinear
periodic orbits computed by numerical integration.

periodic families for the H́enon–Heiles system. Taking into account the symmetry and the
invariance by rotations of angles± 2π

3 of the potential, we can in fact distinguish only three
main periodic families: the ‘rectilinear-R’, the ‘curvilinear-V ’ and the ‘circular-C’.

Below we give the series, truncated to O(A21), representing these three families and
their periods.

3.2. Computation by LP and test by numerical integration of the main periodic families

As mentioned in the introduction, we can setε = 1 and we consequently parametrize the
families by the parameterA or by the energyE (constant of motion) which is related toA
by the relation

E =
∞∑
j=1

EjA
2j . (3.24)

By means of the computer algebra system ‘Mathematica’, we obtain with exact calculation
the three main periodic families as well as their periods to O(A21).

In figures 1–3 we compare, for the energyE = 1
8, the periodic orbits computed by the

LP method, with those obtained by numerical integration.

(1) ‘Rectilinear’ periodic familyR. This family contains in fact three straight periodic
families: the ‘horizontal’H(y = 0) and two ‘oblique’O±(y = ±√3x).

Below we give (3.25) the series representing the ‘horizontal’ family; the two oblique
can be deduced from the previous family by rotations of angles± 2π

3 .

X(θ) = A cos(θ)+ A2

(
1

2
− cos(2θ)

6

)
+ A3 cos(3θ)

48

+A4

(
19

79
− 59 cos(2θ)

432
− cos(4θ)

432

)
+ A5

(
79 cos(3θ)

2304
+ 5 cos(5θ)

20 736

)
+A6

(
11 897

41 472
− 1207 cos(2θ)

6912
− 89 cos(4θ)

15 552
− cos(6θ)

41 472

)
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Figure 2. (a) Three curvilinear periodic orbits computed by the LP method. (b) Three curvilinear
periodic orbits computed by numerical integration. (EnergyE = 1

8 .)

Figure 3. (a) Circular periodic orbit computed by the LP method. (b) Circular periodic orbit
computed by numerical integration. (EnergyE = 1

8 .)

+A7

(
19 283 cos(3θ)

331 776
+ 2375 cos(5θ)

2985 984
+ 7 cos(7θ)

2985 984

)
+A8

(
1181 413

2985 984
− 1151 545 cos(2θ)

4478 976
− 54 067 cos(4θ)

4478 976

− 11 cos(6θ)

110 592
− cos(8θ)

4478 976

)
+A9

(
537 439 cos(3θ)

5308 416
+ 215 725 cos(5θ)

107 495 424
+ 4991 cos(7θ)

429 981 696
+ cos(9θ)

47 775 744

)
+A10

(
132 341 179

214 990 848
− 528 929 135 cos(2θ)

1289 945 088
− 1305 943 cos(4θ)

53 747 712
(3.25)

− 83 729 cos(6θ)

286 654 464
− 13 cos(8θ)

10 077 696

)
+ · · ·
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+A21

(
1846 201 729 551 096 763 039 cos(3θ)

425 973 332 494 163 902 464
+ · · ·

+ 7 cos(21θ)

1277 919 997 482 491 707 392

)
+O(A21)

Y (θ) = 0

ω2 = 1− 5
6A

2− 335

864
A4− 16195

41472
A6− 9244 585

17 915 904
A8− 505 885 685

644 972 544
A10

−53 471 731 165

41 278 242 816
A12− 120 752 481 301 295

53 496 602 689 536
A14

−31 442 429 175 813 815

7703 510 787 293 184
A16− 8411 829 860 794 238 695

1109 305 553 370 218 496
A18

−1148 709 686 193 583 415 155

798 699 998 426 555 731 712
A20+O(A21).

(2) ‘Curvilinear’ periodic familyV. Actually, this family contains three curvilinear families
V1,V2 andV3. Below we give (3.26) the series representing the familyV1; the familiesV2

andV3 can be deduced fromV1 by rotations of angles± 2π
3 .

X(θ) = A2

(
−1

2
+ cos(2θ)

6

)
+ A4

(
19

72
+ 107 cos(2θ)

432
+ cos(4θ)

2160

)
+A6

(
− 9241

41 472
+ 17 761 cos(2θ)

10 3680
+ 349 cos(4θ)

388 800
+ cos(6θ)

115 200

)
+A8

(
26 178 763

74 649 600
+ 4912 669 cos(2θ)

111 974 400
− 60 097 cos(4θ)

111 974 400

+ 409 cos(6θ)

22 394 880
+ cos(8θ)

22 394 880

)
+A10

(
−11 303 303 447

26 873 856 000
− 36 925 058 981 cos(2θ)

161 243 136 000
− 26 246 317 cos(4θ)

6718 464 000

+ 463 349 cos(6θ)

35 831 808 000
+ 137 cos(8θ)

1182 449 664 000

)
+ · · ·

+A20

(
140 898 252 923 082 652 738 578 947

27 963 744 157 874 257 920 000 000
+ · · ·

+ 14 745 542 820 149 cos(20θ)

13 312 230 645 358 437 943 046 307 840 000 000

)
+O(A21)

Y (θ) = A cos(θ)+ A3 cos(3θ)

48
+ A5

(
1657 cos(3θ)

34 560
+ 17 cos(5θ)

103 680

)
+A7

(
120 553 cos(3θ)

2764 800
+ 53 839 cos(5θ)

74 649 600
+ 71 cos(7θ)

74 649 600

)
(3.26)

+A9

(
24 987 797 cos(3θ)

3583 180 800
+ 3742 409 cos(5θ)

2687 385 600

+ 64 711 cos(7θ)

10 749 542 400
+ 103 cos(9θ)

17 915 904 000

)
+ · · ·

+A21

(
63 416 721 855 039 974 586 904 819 141 cos(3θ)

157 044 387 190 621 832 478 720 000 000
+ · · ·
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+ 542 127 808 389 263 cos(21θ)

3904 920 098 305 141 796 626 916 966 400 000 000

)
+O(A20)

ω2 = 1− 5

6
A2+ 673

864
A4− 18 053

69 120
A6+ 13 759 463

17 915 904
A8− 16 915 570 541

16 124 313 600
A10

+4774 203 682 903

5159 780 352 000
A12− 87 632 953 243 730 063

33 435 376 680 960 000
A14

+83 706 128 400 928 836 749

24 073 471 210 291 200 000
A16− 61 194 528 445 910 688 474 923

12 710 792 799 033 753 600 000
A18

+1772 713 703 500 289 738 506 498 277

151 004 218 452 520 992 768 000 000
A20+O(A21).

We remark here that

X2j (θ) = 0
Y2j+1(θ) = 0

∀j ∈ N . (3.27)

(3) ‘Circular’ periodic family C. This family contains in fact two circular familiesC+ and
C− having the same orbit but with two opposite senses of circulation.

X(θ) = A cos(θ)− A2 cos(2θ)

3
+ A4

(
8 cos(2θ)

27
− cos(4θ)

135

)
+ A5 cos(5θ)

1620

+A6

(
−214 cos(2θ)

405
+ 223 cos(4θ)

12 150

)
+ A7

(
−571 cos(5θ)

291 600
+ cos(7θ)

116 640

)
+A8

(
64 463 cos(2θ)

54 675
− 102 373 cos(4θ)

2187 000
− cos(8θ)

874 800

)
+A9

(
592 267 cos(5θ)

104 976 000
− 341 cos(7θ)

8398 080

)
+ · · ·

+A20

(
83 816 790 509 301 709 072 526 567 cos(2θ)

14 400 884 480 716 800 000 000

−178 629 639 940 427 873 315 207 767 cos(4θ)

6336 389 171 515 392 000 000 000

−5086 088 610 691 877 630 528 293 cos(8θ)

1328 952 022 239 161 548 800 00 000

+3460 611 329 192 643 548 389 cos(10θ)

148 468 858 734 531 329 280 000

+ 44 998 399 011 033 141 931 cos(14θ)

95 885 851 629 133 813 598 208 000 000

+ 106 900 220 735 506 097 cos(16θ)

85 492 629 949 052 875 760 640 000 000

+ 232 217 cos(20θ)

151 173 284 836 324 608 000 000

)
+O(A21)

Y (θ) = ±
[
A sin(θ)− A2 sin(2θ)

3
+ A4

(−8 sin(2θ)

27
− sin(4θ)

135

)
− A5 sin(5θ)

1620

+A6

(
214 sin(2θ)

405
+ 223 sin(4θ)

12 150

)
+ A7

(
571 sin(5θ)

291 600
+ sin(7θ)

116 640

)
+A8

(−64 463 sin(2θ)

54 675
− 102 373 sin(4θ)

2187 000
+ sin(8θ)

874 800

)
(3.28)
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+A9

(−592 267 sin(5θ)

104 976 000
− 341 sin(7θ)

8398 080

)
+ · · ·

+A20

(−83 816 790 509 301 709 072 526 567 sin(2θ)

14 400 884 480 716 800 000 000

−178 629 639 940 427 873 315 207 767 sin(4θ)

6336 389 171 515 392 000 000 000

+5086 088 610 691 877 630 528 293 sin(8θ)

1328 952 022 239 161 548 800 000 000

+3460 611 329 192 643 548 389 sin(10θ)

148 468 858 734 531 329 280 000 000

− 44 998 399 011 033 141 931 sin(14θ)

95 885 851 629 133 813 598 208 000 000

− 106 900 220 735 506 097 sin(16θ)

85 492 629 949 052 875 760 640 000 000

+ 232 217 sin(20θ)

151 173 284 836 324 608 000 000

)
+O(A21)

]
ω2 = 1+ 2

3
A2− 16

27
A4+ 428

405
A6− 25 7851

109 350
A8+ 23 207 359

3936 600
A10− 12 435 443 447

787 320 000
A12

+113 100 657 808 997

2550 916 800 000
A14− 118 199 616 016 583 611

918 330 048 000 000
A16

+1393 719 688 073 359 127 771

3636 586 990 080 000 000
A18

−3352 579 515 833 898 822 938 051

2880 176 896 143 360 000 000
A20+O(A21).

We notice in figures 1–3 that numerical integration gives orbits which are
indistinguishable to the naked eye from those obtained by the LP method. It is useful
to show the figure grouping, for the energyW = 1

8, the eight orbits computed by the LP
method.

4. Study of the periods of the three main periodic families

4.1. Coefficients of the periods of the periodic familes

Since the energy is a constant of motion, we can determine the period of each periodic
family in terms ofE in the following form

T = 2π
∞∑
j=0

cjE
j . (4.1)

In tables 1–3 we list, for 06 j 6 10, the valuescj of the three periodic familiesR,V and
C.

4.2. Exact rectilinear families and their periods

Recall that we have found, by means of the LP method, one main ‘rectilinear’ family which
in fact contains three ‘rectilinear’ familes, the ‘horizontal’H(y = 0) and the two ‘oblique’
O±(y = ±√3x).
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Table 1. Coefficients of the ‘rectilinear’ period.

j cj

0 1

1 5
6

2 385
144

3 85 085
7776

4 37 182 145
746 496

5 1078 282 205
4478 976

6 1169 936 192 425
967 458 816

7 36 220 269 467 525
5804 752 896

8 73 201 164 593 868 025
2229 025 112 064

9 190 103 424 450 275 260 925
1083 306 204 463 104

10 24 675 424 493 645 728 868 065
25 999 348 907 114 496

Table 2. Coefficients of the ‘curvilinear’ period.

j cj

0 1

1 5
6

2 49
144

3 − 127 967
38 880

4 − 72 840 859
3732 480

5 − 4789 708 427
111 974 400

6 133 960 064 084 501
120 932 352 000

7 5197 543 150 445 477
3627 970 560 000

8 40 139 072 283 247 536 077
6965 703 475 200 000

9 78 039 878 077 739 881 278 059
37 238 650 778 419 200 000

10 − 531 657 760 660 248 287 261 532 973
4468 638 093 410 304 000 000

We will rigorously confirm this result by a direct calculation. Actually, a rectilinear
solution(x, y) can be searched in the form

x(t) = A · ϕ(t)
y(t) = B · ϕ(t). (4.2)

Substituting (4.2) in the system (1.2) we obtain

B = 0 or B =
√

3A or B = −
√

3A or ϕ = 0. (4.3)

The caseϕ = 0 corresponds to a trivial solution(0, 0). The other cases represent the
rectilinear families

y = 0 y =
√

3x y = −
√

3x. (4.4)

We shall now search the exact periods of these rectilinear families.
The Hamiltonian of the ‘horizontal’ family is given by

H = 1
2(ẋ

2+ x2)− 1
3x

3. (4.5)
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Table 3. Coefficients of the ‘circular’ period.

j cj

0 1

1 − 1
3

2 7
9

3 − 6559
2430

4 324 877
29 160

5 − 110 794 621
2187 000

6 1157 380 170 569
4723 920 000

7 − 87 616 855 970 353
70 858 800 000

8 437 969 924 611 388 303
68 024 448 000 000

9 − 24 971 859 775 321 935 749 203
7273 173 980 160 000 000

10 162 836 728 825 368 274 866 249 487
872 780 877 619 200 000 000

The Hamiltonian of the ‘oblique’ families is given by

H

4
= 1

2(ẋ
2+ x2)+ 2

3x
3. (4.6)

The system is thus reduced to one degree of freedom and we can then apply a method
based on the distributions [8, 9] to prove that the period of the three rectilinear families is
rigorously equal to a Gauss hypergeometric series

T

2π
= 2F1(

1
6,

5
6; 1; 6E) =

∞∑
j=0

djE
j (4.7)

where the coefficientsdj are given by

dj =
( 1

6)j · ( 5
6)j · 6j

(j/!)2
(4.8)

with

(a)0 = 1

(a)j = a(a + 1) . . . (a + j − 1) if j > 1.
(4.9)

The comparison of the coefficientscj (table 1) with the above hypergeometric
coefficientsdj gives a perfect agreement. This therefore constitutes a check of the rectilinear
periodic families obtained by the LP method.

4.3. Discussion of the convergence of the periods

We can easily prove that the radius of convergence of the hypergeometric series representing
the rectilinear period is equal to 1.

Concerning the circular period, we have applied the Burlirsh–Stoer algorithm [12, 13] to
the ratios sequence( cj

cj+1
), where the coefficientscj are given in the table 3. This algorithm

consists of accelerating the convergence of the ratios sequence by means of a new sequence
(bj ) such that limj→∞ bj = limj→∞

cj
cj+1
= − 1

R
. In table 4 we list the valuescj

cj+1
andbj for

06 j 6 24.
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Table 4.

j
cj
cj+1

bj

0 −3 0
1 −0.428 571 428 571 −3
2 −0.288 153 681 963 −0.197 418 393 587
3 −0.242 270 151 472 −0.110 650 287 026
4 −0.219 918 392 969 −0.153 161 118 297
5 −0.206 774 219 435 −0.158 798 755 784
6 −0.198 143 409 350 −0.157 248 276 011
7 −0.192 050 131 766 −0.156883 596 441
8 −0.187 522 053 866 −0.156 987 228 828
9 −0.184 026 244 856 −0.156 985 919 230

10 −0.181 246 586 079 −0.156 987 501 421
11 −0.178 983 861 354 −0.156 976031 160
12 −0.177 106 364 807 −0.156 976581 339
13 −0.175 523 571 818 −0.156 976506 560
14 −0.174 171 227 949 −0.156 976 428 099
15 −0.173 002 473 328 −0.156 976 477 272
16 −0.171 982 334 723 −0.156 976 484 373
17 −0.171 084 184 281 −0.156 976 485 820
18 −0.170 287 392 204 −0.156 976 486 047
19 −0.169 575 729 027 −0.156 976 485 403
20 −0.168 936 252 471 −0.156 976 486386
21 −0.168 358 515 761 −0.156 976 486 276
22 −0.167 833 994 111 −0.156 976 486 277
23 −0.167 355 662 362 −0.156 976 486 275
24 −0.166 917 679 256 −0.156 976 486 279

We can deduce that the sequence(bj ) converges (numerically) to the value− 1
R
≈

−0.156 976 486, and consequently we obtain, with a good accuracy, the radius of
convergence of the circular period

R ≈ 6.370 380 83. (4.10)

On the other hand, the application of the Burlirsh–Stoer algorithm and other algorithms†
(cf [13]) to the curvilinear period does not give any information about its radius of
convergence. We still study this problem as well as the question of the nature of the
series representing the circular and the curvilinear periods.

5. Comparison with the ‘geometrical’ method of Churchill–Pecelli–Rod [9]

The three authors of [9] have used a ‘geometrical’ method which consists of constructing
the periodic orbits by exploiting the symmetries of the potential. Below we give the figure
of the eight periodic orbits ‘geometrically’ constructed by these authors for an energyE

less then the escape energy1
6.

Comparison of the above figure with figure 4 leads to the following remarks.
(1) We obtain eight orbits by the two methods.
(2) Figures 4 and 5 present three rectilinear familiesy = 0, y = ±√3x.
(3) There is a good resemblance (forms and positions) between the ‘curvilinear’ orbits

of figure 4 and those of figure 5.

† Epsilon-algorithm, Pad́e approximants.
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Figure 4. Eight periodic orbits computed by the LP method. (EnergyE = 1
8 .)

Figure 5. Eight periodic orbits ‘geometrically’ constructed by Churchill–Pecelli–Rod(ε =
1, E < 1

6).

(4) Figures 4 and 5 present two ‘circular’ periodic orbits.
However, we notice a disagreement in the position of the circular orbits in figures 4 and 5.

It is useful to mention that the three authors of [9] have conjectured the position of these
circular orbits, not by using their ‘geometrical’ approach, but with ‘numerical’ explorations
on which they have expressed some doubts. In our work, we have resolved this problem by
giving not only the position of the eight periodic orbits at any time and for any sufficiently
small energyE, but also their periods in terms of the energyE.

6. Conclusion

The main aim of this work is to show the interest of the LP method in the research of the
periodic solutions of the Hamiltonian systems. Its importance lies in the fact that it can
simultaneously be used as a means of enumeration of the main periodic families and also
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as a tool for the determination of these as well as their periods in the form of powers series.
In this paper, we have successfully applied the LP method to the Hénon–Heiles

nonintegrable Hamiltonian system. We have proven that this system admits three main
periodic families in the neighbourhood of the origin: the ‘rectilinear’R, the curvilinear
V and the ‘circular’C. We have also shown that the period of the ‘rectilinear’ family is
rigorously equal to a Gauss hypergeometric series (see equation (4.7)).

By means of the computer algebra system ‘Mathematica’, we have computed with exact
accuracy the periodic families as well as their periods to higher order O(A21), whereA is a
zeroth-order amplitude. We have also proven that the technique known as ‘elimination
of secular terms’, on which the LP method is based, is mathematically equivalent to
the ‘alternative of Fredholm’. We have therefore tested the LP series using a numerical
integration; the rectilinear families have also been checked by direct calculation. Finally we
have compared our results with those of the ‘geometrical’ method of Churchill–Pecelli–Rod
[9]. This comparison has led to a good agreement, but we have noticed a disagreement
concerning the ‘circular’ family.

Let us mention that we have applied the LP method, in another work, to two
nonintegrable Hamiltonian systems stemming from astronomy:

(I) H = 1
2(ẋ

2+ ẏ2+ x2+ y2)εxy2 the Barbanis–Contopoulos system.

(II) H = 1
2(ẋ

2+ ẏ2+ x2+ y2)+ εx2y2 the Ollongren system.

We have found that system (I) admits, in the neighbourhood of the origin, six main
periodic families from which three are rectilinear(y = 0 and y = ±√2x). We
have also shown that the period of the ‘horizontal’ familyy = 0 is equal to 2π and
the period of the two obliquey = ±√2x is equal to a Gauss hypergeometric series
T = 2π2F1(

1
6,

5
6; 1; 8ε2E).

Concerning system (II), we have found that it admits, in the neighbourhood of the origin,
six main periodic families from which four are rectilinear(x = 0, y = 0 andy = ±x). We
have also shown that the period of the horizontal and vertical families(y = 0, x = 0) is equal
to 2π , whereas the period of the two oblique families is equal to a Gauss hypergeometric
seriesT = 2πF1(

1
4,

3
4; 1;−4εE).

We finally emphasize that the LP method remains little exploited in other fields such
as the theory of stability and bifurcation, and the research of quasiperiodic solutions of
Hamiltonian systems.
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